Time-like nucleon form factors measurements at PANDA

Małgorzata Sudoł

IPNO/CNRS, France

Proton form factors

M. Sudol IPNO/CNRS

Status of the experimental data

PANDA detector @ FAIR

Detector requirements:

- nearly 4π solid angle for PWA;
- high rate capability: 2x10⁷ interactions/s;
- efficient event selection;
- good momentum resolution $\Delta p/p \approx 1\%$;
- vertex resolution < 100 μm for K⁰, Σ, Λ, (D[±], cτ ≈ 317 μm);
- good PID (γ, e, μ, π, K, p);
- γ detection ->few MeV < E_v < 10 GeV.

Feasibility study

Important aspects in the determination of the proton form factors:

- Background contamination
- Sensitivity to G_E and G_M

Background reactions

- 3 body reactions ('easy' to eliminate)
 Tracking in magnet, θ and φ correlations,
 - ➔ Missing or invariant mass cuts, PID
- 2 charged body reactions

 (e.g. π⁺π⁻,μ⁺μ⁻,K⁺K⁻)
 Most important background is π⁺π⁻,
 Kinematical correlation p=f(θ),
 PID very important,

Background suppression, signal efficiency

Background suppression after Very Tight PID cuts:

- 8.2 $(\text{GeV/c})^2$: 2/10⁸
- 12.9 (GeV/c)² : 5/10⁸
- 16.7 (GeV/c)² : 6/10⁸

Additional factor ~ 100 applying the kinematic fit

Background suppression factor is at least of the order of 10⁻⁹ taking into account PID & kinematic fit !! Efficiency integrated ($|G_{F}| = |G_{M}|$) over $|\cos\theta| < 0.8$

- Efficiency decreasing with the q² value.
- The efficiency of the CL* cut constant over the full q² value.

Monte Carlo, reconstructed, efficiency corrected spectra

We fitted every resulting efficiency corrected e+e- angular distributions in order to determine the error on the ratio $|G_E|/|G_M|$ with a linear 2 parameter fit.

$$N(\cos\theta) = C * \left[\tau \left(1 + \cos^2\theta\right) + R^2 \sin^2\theta\right]$$

01.10.09 EINN09

M. Sudol IPNO/CNRS

Comparison with the BaBar and PS170 results

Measurement of G_{E}/G_{M} ratio with PANDA can be done with

- [>] much better precision than BaBar or LEAR.
- $^{\scriptscriptstyle >}$ will improve the error bars at the low q^2

Effective proton form factor : world data

PANDA: 120 days, L=2 fb⁻¹

Effective proton form factor extracted from different experiments using:

$$\overline{p} p \to e\overline{e} = -$$

$$e\overline{e} \to \overline{p} p$$

$$e\overline{e} \to \gamma \overline{p} p$$

In all cases, the hypothesis of $|G_E| = |G_M|$ has been used to analyze the data.

Effective proton form factor : world data

pQCD predicts asymptotic behavior of G_M

$$\lim_{q^2 \to \infty} G_M(q^{r}) \propto \frac{1}{q^{t}}$$

Phargmen-Lindeloef theorem (asymptotic properties of FFs): $\lim_{q^2 \to -\infty} F^{SL}(q^2) = \lim_{q^2 \to +\infty} F^{TL}(q^2)$

PANDA will provide a new set of good quality data that can be compared to the SL data in a region where the asymptotic behavior of form factors might show up.

Theoretical models

PANDA will improve measurement of:

- > Proton magnetic AND electric form factors up to $q^2 = 14$ (GeV/c)²,
- Cross sections (dominated by the magnetic form factors)
 up to q² = 30 (GeV/c)²

- > Sensitivity to odd $\cos\theta$ contribution have been studied (>5%),
- > Unphysical region can be accessed via $\bar{p} p \rightarrow e^+ e^- \pi^0$